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..... OUTLINE

« Background: Relationships between Properties
and Performance of High-Density Materials

— the adiabatic shear fallure of DU
— general approachesto alloy development

e Uranium (U-V-X) Alloys

o Alternative Matrix (adiabatic shearing) Tungsten
Composites

« Amorphous and Nanocrystalline Alloys

o Severe Deformation Processed WHAS

» Jacketed Penetrators

e Conclusions



Propertiesvs. Performance
Relationships/Reguirements

* Engineering properties: strength and
toughness.
— Allow more efficient sabots/projectiles.
— Resist complex armors.
— Soft-launched projectiles expand options.

Aluminum Sabot

*High-rate, high pressure, deformation.
- Controls efficiency during deep penetration.

~ Atthe present time, Depl eted h
Uranium alloys provide the best
overal combination of structural and

L high-rate properties. y




. Pressure & Strain Rate Distribution
Q During Deep Penetration
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Strain-hardening and ther mal-softening mechanisms
compete during the high rate (adiabatic) defor mation.




N, Flow/Failureof High-Density

& Penetrator M aterials
UNIFORM LATE SHEAR EARLY SHEAR
BULK OCALIZATION + DISCARD LOCALIZATION + DISCARD
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DU failure by adiabatic shear. This reduces the size of
penetrator head, burrows narrower & deeper cavity.




Flow and Failure of High
Density Penetrator Materials

TUNGSTEN HEAVY ALLOY

« WIDER CHANNEL

« MUSHROOM NOSE

« LESS DEPTH
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U-8Mo ALLOY



Dynamic (SHB) CompressonTests

(strain to adiabatic shear failure)
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Dynamic compression experiments
5 : provide a means for assessing
U-3/4Ti specimen material failure behavior at high
cleaved by shear band Qoading rates. Y.
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Limit Velocity (m/s)

Comparison of RHA Steel

Perforation Capabilities
Yescaletests, 659 L/D=15 rodsvs. 76.2mm RHA
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Deep Penetration performanceisa function of
alloy density & strain to shear failure.




@_ LLLLL Material Options &

. DU alloys: Enhance susceptibility to shear failure,
while retaining/improving engineering properties.
 Non-DU materials: change flow/failure behavior

— Use dlternative matrices, selection based on mechanical
and thermal properties that promote high-rate (adiabatic)
plastic instability and localization

o Matrix alloysw/high strength, low work hardening, low strain
rate sengitivity, rapid thermal softening

— Amorphous & nanocrystalline materials as a candidate
matrix aloy or entire composite (nano W phase)
o exhibit localized shear failure in dynamic and quasi-static tests

— Anisotropic flow/fallure of W crystals

e Jacketed Penetrators:. Systems approach, with
materials issues




CURRENT ANTI-ARMOR MATERIALS
DEVELOPMENT PROGRAMS
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Uranium-Vanadium Alloys

Composition Density | Hardness | Ult. Tensile Strength
(g/cc) HRC (Ksi/Mpa)

U-V (1-4.5%) |16.7-18.5|36-54 To 310/2140

U-V-X(ternary) |16-18.5 |36-55 To 320/2200

U-3/4Ti 18.6 38-49 To 250/1720

U-2.1%V,
banded
martensite

(from Staker)

U-.75%Ti,
acicular
martensite

(from Staker)

« U-V alloys have the potential to maintain penetration
capability while reducing penetrator density and mass.
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Resdual Ti6AlI4V Penetrator »Residual W-Ti alldy
Composite Penetrator

 Replace conventional Ni-Fe matrix alloy with one more
prone to adiabatic shear failure, to enhance plastic instability.
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« Hafnium alloy HB6 demonstrated the preferred failure
behavior in dynamic compression tests.
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Performance of W composite with hafnium alloy matrix
significantly better than conventional (Ni-Fe)-matrix WHAS,
ut still short of DU,




W Composites with Bulk
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& Amorphous Metal (BAM) Matrices ™1,

Typical M echanical Behavior: no strain
hardening in quasi-static s -e curve, serrated
pI astlc flow (shear bandlng)

MMM LI L L L | L R S B

«Amorphous alloys lack long-
range structure of crystalline
solids.
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*Recent development of Strain
complex, multi-component ' Q:n% ?2] f;r4615°) shear
bulk metallic glass alloys

000 - E =97 GPa

Stress (MPa)

00

v Fr=Ti=Ni—Cu-Be

“Deformation Mechanisms of the
ZrTiNiCuBe Metdlic Glass’,
Wright, Saha, & Nix

make 1 to 5 cm thick sections

possible (low quench rates)



*ARO-funded Ca Tech

development of \WW-composite using

Z-Ti-Cu-Ni-B¢ bulk castable
amorphous alloy

composite.

80% wire
reinforced.

W Compositeswith Bulk &
& Amorphous Metal (BAM) Matrices/tL

Tungsten wire/
amorphous alloy
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Sub-scale ballistic tests
suggest DU-like improvement
In penetration performance.
From ARO grant to CalTech
(W. Johnson)
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o Like amorphous metals,
nanocrystalline (<100 nm
GS) metals exhibit little or
no work-hardening or bulk
plasticity in quasi-static
tests

« Shear banding behavior has
been observed in materials

1.510% §=

MPua)

with GS >250 nm |

Engg, 51

Tests by Dexin Ja, of Johns
Hopkins U., aver.GS 268 nm




W-Composite
Penetrator Type Material Density | Limit Velocity
(kg/m?) (M/s)
Depleted Uranium U-3/4 Ti, Rc40 | 18600 1260
Conventional WHA 90W-9Ni-1Co | 17100 1390
Nano W-Composite W-Cu-Ni-Al 15200 1347
W-Composite w/Hf matrix | 80W-20 HB3 | 17000 1350

Performance of hanocomposite
surpassed that of conventional
WHA or best adiabatic-shearing
matrix, despite lower density

DU vs. WHA performances
narrowed, but DU is still
superior

Nano W-Composite Penetrator Erosion
Products Lining Penetrator Tunnel (15X)




Equi-Channel Angular Pressing (ECAP) 5056 ALLOY |
* New Mechanical Working Technique i S sesmEcAE '
« Developed in FSU Tl e ]
Path to improved mechanical properties or A N
alternative path to grain size refinement y o = -
(nano) St

Key Features 5056 Aluminum Alloy

« Cross section in equals ECAE, >2x strength

Cross section out.

* Pure shear deformation #0f Passes Equiv. Reduction
 Imparts cold work (>99% ) 1 69%

with or w/o microstructural 2 90

changes (reversible). 4 99

*Multiple passes increase 8 99.99

deformation, refine grain size

PARTICULATE MATERIALS

PROCESSING TEAM



TEM STRUCTURE AND
MICRODIFFRACTION PATTERN
8 PASSES, ROUTE C
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Cross Section

1mm Die Angle of 110°

« Ultra Fine Grained (UFG) Structure Route C, 4 Passes

* Mean Grain Size Approximately 1 nm, many grains 0.3 to 0.5 mm

PARTICULATE MATERIALS

PROCESSING TEAM



@ Material Bonding for Jacketed Penetratorg.y

o ]

G'o"als: Fracture Resistance, Improved Stiffness, Reduced Mass

Jacket Material
Selection and Bond gy, '

‘Strength will be Key to <

success iy
Candidate bonding techniques guided by ballistic
experiments and simulations; FOCUS — High Strength Bonds

Themal Spray Explosive Cladding




Glad Metal, 316L Stainless Steel

Base Metal, 1UNQSten Heavy Alloy

v N
Metallography 6 High Strength Bond Achieved! \

v/Centerline Properties T . 4
v’ High Strength Bond Subscale Experiments Pending

» Reactive & Passive Targets
» Follow-on contract in place.

» Full Scale Processing
»|terate based on Ballistic Results.

» Future — Consider alternate bonding.
» Swaging

» Co-extrusion
\ » Cold Spray /
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& ConclusiongSummary

e Certain minimum mechanical properties required
for launch, for performance vs. complex armors

o Efficient flow & failure behaviors improve
penetration performance against thick monolithic
armor and individual armor components (e.g.
basal armor behind ERA appligue)

» Alloy development efforts must meet both goals



